Shahed University

Troodon: A Unified Framework for Massively Parallel
Modeling and Simulation of Computer Systems, and Digital
and Analog Electronic Systems in Heterogeneous Abstraction

Levels

School of Engineering
Department of Electrical Engineering
Shahed University

By: Alireza Poshtkohi
Website: www.poshtkohi.info



Table of Content

Motivation

A New Parallel Modeling and Simulation Language: OSML
Language

Troodon Tool Flow

Spacetime-Parallel Exponential Integration of ODEs and
PDEs

Parallelization Technigues Not Discussed in this Presentation
Contributions
Future Directions



Motivation

« With increase in the complexity of integrated circuits, it is necessary to improve the
speed of electronic simulators in all levels of abstraction (transistor to system level)

* We need scalable parallel modeling and simulation languages and frameworks

e Interaction between HW/SW systems and their analog physical environment

» Today systems leads to systems of digital HW/SW interwoven with analog and mixed
signal blocks. Embedded Analog/Mixed-Signal (E-AMS) systems

Hacoirer Serial Modulator/
ulator
> ADC v & Host
7 Interface demod. 0'1-» processor
s — ; DSP
| b .
Antenna o i
front-end - Calibration & Control M,:Or?l_ .
| . | . | confroter Memory |pid Im;gg'g
Transmitter
A <N A —] |
AR .. to all blocks
'y x i e ol High
' ' Power Audio Speed
RF || Temp. | | Oscillator Clock Manage- psp 1 seral
detector | | sensor Generator meant Interface




Research Roadmap

« Parallelization approaches developed for this research

Optimistic
PDES —
Optimistic
System D—» Architecture
Modeling |—

Language

(OSML) @ Gate

/b v{ :I—fvm Circuit
a

Spacetime-Parallel
Exponential Integrator

'

G

im@ﬁ Device

Massively Parallel Quantum
Monte Carlo Device Simulation




OSML Language - Introduction

 The large size and complexity of today’s digital systems
with heterogeneous components, and complex
connections and functionalities impose many challenges
for verification in different abstraction levels particularly
for multi-domain systems such as analogue mixed signal.

o Accurate and high-speed simulation is a key point to
enable

— efficient and potential verification
— power and performance estimation,
— and design space exploration.

 These simulations are performed based on discrete event
simulation.



OSML Language - Contributions

A new parallel simulation language (PSL) for ESL

— A new optimistic PDES language called Optimistic
System Modeling Language (OSML) for ESL

— One of the six research challenges in PADS
— Solves the obstacles unexplored by traditional PSLs

— Help ESL community avoid repetition of basic
discoveries

— First application of optimistic PDES to SLDLs

— For the first time, we allow different hardware models
at different electronic abstraction levels to be executed
by optimistic synchronization

— We implement a unified ESL CAD tool called Troodon
to automate parallelization of the existing hardware
languages °



Parallel Simulation - Principles

e EXxecution of a discrete event simulation on a
parallel or distributed system with several
physical processors.

 The simulation model is decomposed into several
sub-models that can be executed In parallel
— Spatial partitioning,

— Temporal partitioning,

« Radically different from simple simulation

replications.



Synchronization Protocols

 Fundamental concepts

— Each Logical Process (LP) can be at a different
simulation time.

— Local causality constraint: events in each LP must be
executed in time stamp order.

e Synchronization algorithms

Conservative: avoids local causality violations by
waiting until it's safe.

Optimistic: allows local causality violations but
provisions are done to recover from them at runtime.




Time Warp Algorithm (Jefferson)

Different rollback management technigues
Copy State Saving (CSS)

— Efficient if LP state small

— Can be made transparent to application

Periodic State Saving (SS)

— Must turn off message sending during coast forward
— Reduced memory requirements

— less time for state saving

— Increased rollback cost

Incremental State Saving (I1SS)

— Preferred approach if large state vectors

— Means to simplify usage required

Reverse Computation (RC)

— Efficient, requires automation



OSML Language — Related Work

88 YEARS OF COMPUTER SIMULATION

Digital Computers  Advent of SSLs Multi-Core Revolution
* ENIAC - Vacuum tubes * SimScript/Simula (OOP) » Charm++ — DSM * APSOTLE * Many paralel programing
+ Assembly language « S0L, BOSS, JASP * MPI/PVM —DSM * Parsec models & languages

+ Transistor invention CML, GASP,ASPOL, ... » Cilk — SM * TeD * Intel TBB, NET TPL, UPC,
» Transistor computer . * HPF - DSM CUDA, .

Many C-based libraries

c e
Invented “\:\i::
1930-1945 1955-1960 1977-1988
—_— r’:\ ) r:“\ () )

OpenMP — SM

1946-1954 1961-1976

Analog Computers  Search for Simulation

* Invention of differential + Simulation program

analyzer * Fortran emerged i
+ Used in World War Il + Sequential simulation Advent of PDES
for analog simulation worldviews + Distributed simulation

*+ GSPand GPSS * Logical process worldview
* Synchronization:
conservative
optimistic  (Time

adaptive

S5L: Sequential Simulation Language
PSL: Parallel Simulation Language

PPL: Parallel Programming Language
HDL: Hardware Description Language
SLDL: System-Level Description Language

(CMB)
(CMB),

Warp),

. C++
Invented
Sequential SLDLs Exascale Computing
* SystemC » Distributed shared
Sequential s memory architecture via
HDL +  SystemVerilog message passing
S * Thousands to millions of
* VHDL Processor cores
+ Verilog » Simulation becomes
cumbersome
*+ OSML - A new PDES
language for EDA

A. Poshtkohi, M.B. Ghaznavi-Ghoushchi, K. Saghafi, Computer Modeling and Simulation — A Philosophical and Technological Survey, under

finalization, 2019.

10




OSML Language

« OSML is a fully-fledged object-oriented simulation
language

Process-level granularity

General purpose and domain-specific PSL
with a dedicated elaboration phase

has a PDES-aware syntax

is a PDES systems programming language for explicit hybrid state
management

is a PDES application programming language for transparent hybrid state
management

takes advantage of a profile-driven sequential execution for partitioning
IS a general-purpose and special-purpose simulation language

allow the programmer to use the facilities present in common parallel
programming languages like MPI (mapping, partition, etc.)

Reversible ADT
Crafted in C++17
and so many other features



OSML Language

One of the primary goals of OSML language is to enable optimistic,

explicitly parallel system-level modeling

OSML Core Language

PDES-aware Utilities Hardware Data Types
Structural Part|t|0n|ng/Mapp|ng Finite_precision integers
Elements Optimistic tracing Limited-precision integers

Components Resource allocator Bit vectors

Explicit Serialization 4-valued logic type
hierarchy Profiler 4-valued logic vectors

ooP Optimistic | PDES Application | PDES Systems

Pins/Ports | components Programming | Programming

Interfaces
Connectors Clock Model Model
Processor

Router eversivle dala types |- o qimistic delete
Wire Arbiter Reversible containers PSS checkpoint
FIFO Parallel Event-driven Simulation | 1SS checkpoint

Semaphore PDES-aware processes RC callback
Mutex Distributed serializable events Explicit fiber

Programming Language C++17 Standard

OSML Exokernel
Process mgr., kernel state, PSS/ISS/RC managers, fossil collection, lightweight fiber,
model elaborator, PDES time, tie-breaker, optimistic memory mgr., partitioning
services, hierarchical weighted graph, optimized containers (hash table, vector, etc.)

PDES Abstraction Layer (PAL)

PDES Microkernel
Kernel logical process, Event, Time, GVT mgr., Comm. mgr., Event set mgr., Time
Warp sim. manager, OnGVT callback, OnRollback callback

PDES Abatract Machine Defined by Logical Process Worldview

OSML language architecture

12



OSML’s PDES Systems Programming Model

» |t provides a user with low-level access to optimistic dynamic memory
and hybrid state saving for developing hardware models

A grid of processing elements—l FIFO queue using ISS
Abbreviations Memory  jser space  Processor Accelerator Enqueue operation |
A: Aggregation Component Component Component que N « P3.0new[size]
DE: De-aggregation : P;.isS_save(rear.next,rear)
) MEM Reg. file Req. queue) rear.next < N
T: Tie-breaker |:|:|:L__l -
F: Flush X rear < n .
E: Event Set Mgr it Dequeue operation |
O.' Output Mgr ' it Node n « front
S'. Serializatioﬁ Poiss_save(front) "L/ S
' S T front « front.next | o 1
D: De-serialization Linked list
L1SSHRC ) P,.0delete n

P: Processing

Priority queue using ISS + RC

== Transition v € USINg IS
0 Port 2;;1 v En'queue operat|lon (intpri)| Heap
B Pin ' OSML exokernel  |Psiss_rc_save(pri,Enqueue_rc) ()
- Port-to-Pin Reg. heap.insert({pri,timestamp}) oXo
—Pin-to-Pin Binding PDES microkernel  |Enqueue reverse callback |

DNGVT nRollback  LP; LP, LP; heap.remove({pri timestamp}) U

A many-core architecture of PEs and its interaction with optimistic PDES engine by hybrid checkpointing



OSML’s PDES Systems Programming Model

» |t provides a user with low-level access to optimistic dynamic memory
and hybrid state saving for developing hardware models

MEM —1GB

=

reg [63:0] MEML[O:MAX];
%—/—@-» always @(posedge clk)
=5 begin
o i F(mode) 64 &
2 € MEM[addr]=datain; [+ &
= else =4
3 @ dataout=MEM[addr] ;
o >
53 end
: o
=

The whole snapshots during 10
rising clock edges by CSS. MEM

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

The whole snapshots during 10 rising
clock edges by hybrid state saving.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Bo1ss
0
0
@ Y
0
0
(2]
0 L
0r-p
=
m
Z

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1000



OSML’s PDES Systems Programming Model

* Molding an optimistic component in OSML

1 template <class T, int size>
2 class osml_sync_memory : public osml_component {
/I Pin and port definitions
3 osml_pin<osml_wire<bool > > clk; ...
4 osml_inport<osml_wire<bool > > _clk;...
5 process_state pss_state; // PSS-based state definition
6 T *array = nullptr; osml_process *p;
7 osml_sync_memory(const std::string &name){
8 register_pin(clk, _clk); ... // Register pins to ports
9 /I Register a stackful process and do its settings
10 p = register_process(process, true, &pss_state, name);
11 p->register_on_partitioning(on_partitioning);
12 p->register_port(_clk); ...
13 p->register_sensitivity(_clk, OSML_POS_EDGE);

/l This method is invoked after partitioning
15 static void on_partitioning(osml_process &owner){
16 auto myComp = (osml_sync_memory *)owner.get_component();
17 myComp->array = new T[size];
18 }

1 static void process(osml_process &owner){

2
3
4
5
6
7
8
9

10

11
12
13
14
15

auto myComp = (osml_sync_memory *)owner.get_component();
auto myState = (process_state *)owner.get_state();
int addr = myComp->address->fetch();
switch(myState->get_label()) { case 0: goto LO; }
while(true) {
if('myComp->_we->fetch() ...) // Read from memory
myComp->_data_out->put(myComp->array[addr], owner);
else if(myComp->_we->fetch() ...) { / Write to memory
/I We must checkpoint before performing the realwrite
owner.iss_save(&myComp->array[addr], sizeof(T));
// Now, we perform the write to the memory
myComp->array[addr] = myComp->data_in->fetch();
myState->writes++;
}

osml_wait(owner); myState->set_label(0);return;LO:

}

Definition of an optimistic memory written in OSML

The process implementation of the memory component

15




OSML’s PDES Systems Programming Model

* Following the development of optimistic components, the
programmer connects them together in a function called

osml_main

osml_main
Optionaly, perform Instantiate a
parallel simulation L » set of a pair of
Set simulation > settings if needed wire/connector.
time resolution. Sufﬁgqisesgg—,e ',:;SS i
Instantiate optimistic
. . ‘Open an system components from
Bind wires and < optimistic OSML @— OSML library (such as
connectors to VCD trace file to memory, clock,
component record desired processor, router, etc.) or
instances. wire activities. user_imp|emented
¢ hardware components.
Instantiate OSML

R:_at%ister a L}%e{ﬁdelfmed I simulator with providing
partitioner wi € Kerne > the number of physical
or one of the default cores and an optionally > sli?;‘SI:;?c?r
partitioners such as partition-to-processor ]
round-robin, METIS, etc. mapper.




The Optimistic OSML Simulation Kernel

* The system-level description written in OSML language must finally
be simulated by a kernel

State

‘ +CloneState()
+RestoreState()

| osmi_pss_mgr I osml_rc_mgr | +FreeState()

VAN Y V4

SimulationManager LogicalProcess osml_pdes_state

=

/\ /\

SequentialSimMgr TimeWarpSimMgr

osml_iss_mgr

+RegisterLogicalProcess() i +Priority: Int32 +Owner: osml_process +Sender
+OnPartitioningCallback() __. +nsi_values: Array +Receiver
+GetPartitionCount() it +nitialize() +process_state +SendTime
+Run() +ExecuteProcess() +n_registered: Int32 +ReceiveTime

: . it +GetSimulationTime() [ IR P ¥
+WaitOnCompletion() +GetNextEvent() +LC: Int64
+GetNextEvent() +SendEvent()

s +wait_type +T: IntG4
+SendEvent() S e e +GetState() +has_wait_registered +LC: Int64

| osml_pdes_event | -

PdesTime

[ osmi_partitioner |

osml_connector |

osml_pdes_Ip

! osml_tie_breaker

osml_remote_param

osml_inport

| osmi pin |
| usml_outportl | osml_gportl

|>| osml_interface | ]

|Ismst_”| A mosml_compnnt —
4 4 osml_nonshared _if . %osﬁml_mm h |

| osml_dynamic_event |

| osml_static_event |

osml_event

osml_fiber

L

I osml_simulator | osmi_hashtable |

osml_process [——

osml_profiler

1]
1}
[ osmi fifo | | osmi mutex | osml_wire | [ osmi_clock |

B OSML exokernel
O OosML PAL APIs
O PDES microkernel

UML class diagram of the optimistic OSML simulation kernel 17




The Optimistic OSML Simulation Kernel

 When a straggler message is received, rollback is per-
formed in three mixed steps

— ISS manager restores the before-images of state variables by a
reverse traversal

— RC manager invokes the reverse event handlers upon completion
of every ISS operation to backtrack the computation

— PSS manager is activated and performs coast forward in which
the LP is executed up to the rollback point to replay intermediate
process states

Fossil collection from the beginning of onGVT

state queue to GVT time Callback Straggler message:
OnRoﬂbafk Callback

I1SS-based PS5S-based
Checkpoint Checkpoint

LY = -y = - Virtual Time

for LP;

Coast

Event

forwar
processed OA ISS: Reverse traversal to o

- restore before-images
RC: Executing reverse event handlers e




The Optimistic OSML Simulation Kernel

 The problem of simultaneous events in parallel simulation

— Two or more events that are scheduled to occur at the same point
in time are called simultaneous events

— A number of tie-breaking rules are necessary to decide which
simultaneous event should be executed first for a deterministic
simulation

— To solve this problem, time is defined by the following rule

tl<t2@T1<T2V(T1=T2/\Lcl<LCz)V(T1=T2/\LC1=LCZ/\PT'1<PT'2)



Troodon Tool Flow

Troodon facilities the task of parallel simulation of existing HDLs and SLDLs on many-core
HPC clusters

- iy

. U MEM Y - HW
s 88 @ | m*Demgner

‘ 3 I Llee 1
-y —_ us | -
\ % i CPUBus |& ,<—| System Blueprint ‘
[1:] £
W= m i 3
o~ HW e ¢
. — T —— " .r/_h\\
T — | = = i
IR IR “I‘.
b z = = =2|F]| !
e S STl ks \ !
— T | === N /.r
_ - e __1 =
z\./’ System Description
[ %

) + If an
\\@ @M/} OSML

T Compiler Interface modal

If an existing SystemC model If existing HDLs
or SLDLs
SystemC Translator Tools
Representation ¢ (UML, Verilog, ...)

OSML Parallel Simulation
Toolset (Kernel, Partitioner,
Profiler, ISS Manager, ...)

LLVM-based OSNML
Optimistic Compiler

P
LLVM/Clang, ...)

Parallel Executable

Simulate on the HPC in Parallel

-
High-Speed Switch

I
|
I
I
I
|| Core | Cora | Caore Cora | Core | Core Care | Core | Core

Host OS5

Care | Core | Core

20




e
c
e
c
2
i
+
+
O
O
£
i
0
>
)]
N
O
N
o

SystemC-to-OSML compiler works in three phases:

Troodon Tool Flow

— Preprocessing Phase

— Compiler Analysis Phase (Frontend)

— Source-to-Source Transformation Phase (Backend)

Preprocessor (PPSC)

¥

LLVM-Clang-based
Parser

v

Abstract Syntax Tree

v

Analysis Phase: Finds
Missed LP Semantics

v
Rich IR Suitable for
PSC2 Backend

PSC2 C++ Backend

Transformation Phase

¥

Clang AST Traverse
and Rewrite Facilities

Transforrts All SC
Constructs to PDES-
Compliant PSC
Language

Partitioner and

PSC Simulation Kernel

Mapper Libs

C++ Compiler (GCC,
LLVM/Clang, VC++, ...)

/7 Parallel
Simulation
*._ Executable ./

Composite Date Type
System

Simultaneous Event
Tie-Breaker

Optimistc PDES
Wrapper

WARPED Optimistic
Simulation Kernel

MPI Library

PSC Runtime Framework Suite



OSML Language — Performance Study

We study a number of experiments to evaluate the OSML
performance
— The tests were carried out on an HPC cluster of 17 nodes

— Each machine had 12 cores operating at 3.33 GHz, 12GB RAM and 12MB L3
cache

— The machines were connected to a 40 GB/s fiber-optic network
— Each node ran CentOS 7 Linux with a kernel 3.10.0-327

— OSML speedups are reported in comparison with Accellera sequential SystemC
reference simulator

m----- === m———-- (O MPEG Encoder [ Mat. Mul. Kernel @ Equation Solver
I
comir ||l G el (R e o o
|PEHPE|—|PE|—|PEHPEHPEHPEHPEl
Internal =T ——" L [ L [ T T -]
Memory y Cored : | Cores : L Coreé : | PIE H P|E |—| PlE |—| PlE |—| PlE H PlE H P|E H P|E |
— | pE—
Request r |PEHPE|—|PE|—IPE«‘PEPPEHPEHPE'
Queue I. —— — e —
WS Mk W
: Core 7 | : e | : Coren | [ Async. Dual Port Local Memory |

A many-core accelerator A many-core BFM platform



OSML Language — Performance Study

Speedups of the benchmarks

200F—— I SEPRRTRE T ISESSRRES T EPEEPEEy LERSPRPY T LESREEE Jg] 50— — — — — — T ——hl
; : ; ; ; ; : : : : : : | | | | L

; : ; : : ; : : : : ' ' ' : : ; -

“IBD_ ....... ........ _ ........ ........ \ ........ ........ ........ ........ ..... / /E’\_ 102 PEs - HSS E E E ﬂ’i
- : | | : : : 5 a2 5 —6— 340 PEs - HSS : E Ll
L. e e S SRS s e 3 ,ﬂ’ ........ s - B E10 s . HSS P :

5 : 5 : . 5 : 5 : : -+-@-+- 1020 PEs - HSS : A ST - S
140k O [ O S Yo feid ' v — T L}
5 : o : E : - 100 1TPEs-PSS ... dooeness o S — beened
120k S N R AY - SU CONA Sy el v ulll L] --EF- Linear S i

mg_......é ........ ......... E"'I/IE .......... '''''''''' ..... "- -.-.-.;'.'.u'.'.'.-.-.éﬁ

i) T ST LB EAAN A ........ ........ ........ _

ol JA

40_ ..... IS L ........ ........ ........ —_—— CSORT _
Y /- (O :

Speedup
Speedup

Nk e ........ ........ ......... ........ ........ —B = Lingar _

] i I 1 I ] i o
20 40 B0 a0 00 1200 140 180 180 200 0

Humber of physical cores 20 40 60 80 100 120 140

Number of physical cores

Speedups of the different system level models Speedups of the BFM model with respect to the
number of PEs



OSML Language — Performance Study

» Speedups of the benchmarks

— This model has fluctuations in speedups specially by increasing the number of
processors. This is because of the small amount of RAM installed per node on the

cluster
; ' ; ! ! ! ! ; —Al
180}-| ——s512PEs [ R . Do b R /_
—&— 1024 PEs || : 5 § : 5,/ :
160 3+ 1535 PEs ......... ......... ......... ........ RIRTR E ....... _
— @+~ 2048 PEs | : : : ,D’/ :
140 - - - Linear ......... ...... G ......... \ ..... / ........ ........ _
: : 5 : (m % N - : :
120k U e {Eh_‘ ......... S e S
5 : : A} o : L e
= : : 18-.. A 1 f e
E 1DD ......... ......... ......... -. '.IMQ/W_.‘\ ..... ............ AT ._
2 IO N A\ T
Woank ,f: ...... f ERR IR SRR P A SO «_
N —e W AN Tog
BObk--e- SR E A I EI ...... ....... S _
P E : : 5 : p
ok _ - ......... PR, ........ ........ ........ ...... e
gk ......... ERPTRRR ......... ......... ......... ........ [ TR _
. ; ; ' i

! I i 1 I ]
20 40 ] g0 100 120 140 160 180
Number of physical cores

Speedups of the many-core triple DES RTL model with respect to the number of PEs.

A. Poshtkohi, M.B. Ghaznavi-Ghoushchi, K. Saghafi, Optimistic Modeling and Simulation of Complex Hardware Platforms and Embedded
Systems on Many-Core HPC Clusters, IEEE Transactions on Parallel and Distributed Systems, 30:2 (2019), 428-444. (IF=3.971), doi:
10.1109/TPDS.2018.2860014.

A. Poshtkohi, M.B. Ghaznavi-Ghoushchi, K. Saghafi, Optimistic Synchronization and Tool Flow for Massively Accelerating SystemC on Many-
Core HPC Clusters, 2019. In finalization. 24




Spacetime-Parallel Integration Using Exponential Integrators

Exponential integrators are a class of numerical methods for the
solution of ordinary differential equations, specifically initial value
problems

This large class of methods from numerical analysis is based on the
exact integration of the linear part of the initial value problem.

Because the linear part is integrated exactly, this can help to mitigate
the stiffness of a differential equation.

25



Spacetime-Parallel Integration Using Exponential Integrators

 Related works
— Traditional SPICE simulation: XYCE parallel simulator [1]

Quiescent solution of the
circuit

A 4

Modeling circuit elements

A 4
Setting up circuit
equations

A 4

> Linearize circuit
equations

Solve linear equations
Ax=b for x

I

Converged?

No

Next time step

>
»

Yes
A

No . . .
End of simulation time?

Yes
A 4

Terminate

[1] Online: https://xyce.sandia.gov/



Spacetime-Parallel Integration Using Exponential Integrators

* Sequential formulation

du(®) _
— = Au®) + 9(0)

ae () _
dt

e e At Au(t) + e 4tg(t)

d  _ L _ar Gu(®)
a(e Atu(t)) = —de tu(t) + e 4t 7




Spacetime-Parallel Integration Using Exponential Integrators

e Parallel formulation

Scheduling of Moving Exponential Time Windows (METW) technique

Master Process Process Process Last
process HIIID 1 M 2 M k ﬂ process

A pipeline of processors in METW



Spacetime-Parallel Integration Using Exponential Integrators

* Experimental studies

Implemented in C++ and MPI

Tested on a 12-core machine (NUMA, two processors each having 6 cores)

A RLC network with 100k elements

Spacetime simulator is only implemented to exploit time-axis parallelism not space
Xyce is a space-parallel SPICE simulator
Xyce is set with preconditioned GMRES iterative solver
The results shows promising results that can be improved if implemented by space parallelization

PARALLEL EXECUTION TIMES (SEC)

EXECUTION
SIMULATOR 6 CORES 12 CORES
TIMES (SEC)
TIME SPEEDUP TIME SPEEDUP
SPACETIME 110.26 59.1 1.86 29.7 3.71
XYCE 2300.78 1114.34 2.06 590.53 3.89

A. Poshtkohi, M.B. Ghaznavi-Ghoushchi, K. Saghafi, Extreme-Scale Spacetime-Parallel Modeling and Simulation of Ordinary and Partial
Differential Equations using Exponential Integrators, under finalization, 2019.

29



Parallelization Techniques Not Discussed in this Presentation

« Parallel Nano-Scale Device Level Monte-carlo Simulation
— Device-level simulation are very time-consuming, so it requires parallelization

Configuration % Slave n
=
Initialization

Initialization
EMC

Slave 1

1

[Pnis sion soluer]

Yes No

O

Direct parallelization of the monte-carlo
device simulations

Sequential Monte-carlo Device Simulation 30



Parallelization Techniques Not Discussed in this Presentation

 PSML: Parallel System Modeling and Simulation Language for
Electronic System Level
— An asynchronous conservative language
— Cross-platform execution environment using Parvicursor services
— Formally-defined parallel execution semantics
— A multi-core implementation

SystemC, SystemVerilog,SpecC | | Verilog,VHDL |
®&—PSML as a Parallel Intermediate Language———@

ared

Designer GO@?,,,H@@rarchical PSML User LP Network d
&

vars
Events

Port / Delay

PSML @

Compiler | | | -/ static /
| \ | Statevars — sensitivity

PSML Simulation Kernel I
—e =R
Model Partitiloning and Mapping y
= 4 1/

PSML L
Developer Clustered Kernel LP Network

L
PDES L=
Developer T A
u v Future LVT/ Tie

L
PDES Wr r =
hd = 4 ES appel Event List Breaker
PDES Simulation Kernel Unsent scheduled
[ / event list

Jdi.—o ; \ lPagallel Computing Platform /

A. Poshtkohi, M.B. Ghaznavi-Ghoushchi, K. Saghafi, PSML: Parallel System PSML conceptual framework
Modeling and Simulation Language for Electronic System Level, Journal of
Supercomputing, 2018. doi: 10.1007/s11227-018-2682-1 31




Parallelization Techniques Not Discussed in this Presentation

« Parvicursor is based on the distributed objects paradigm that can facilitate the
construction of scalable and high-performance parallel distributed systems

OpenStack | Eucalyptus

Nimbus

H OpenNebula

Amazon Aneka

CloudStack

Azure

i {Grid Abstraction Layer (GAL)
Globus HTCondor
UNICORE Legion ‘

Parvicursor Abstraction Layer (PAL)

Computational
Services, Programming
Models (xThread)

Scalable I/0 Services
(PCAS), Zero-Copy Comm.

ECMA.NET-Compliant Parvicursor.NET Framework

Remoting Services
(xRMI, POPI, PDR,

PSI)

Data Services
(XDFS: xFTSM,

XDFSM, xPathM)

Security Services (xSec:

Native C/C++ Runtime

Authentication/Transport Security)

Hardware Access Layer (HAL)

Linux UNIX Windows OpenCL CUDA

KVM Hyper-vV Xen VMware
s
HardwareLayer(HL) .................................
Multi-Core ‘ Many-Core GPU HPC ‘ Virtualization
Network ‘ Storage FPGA Other Devices

A. Poshtkohi, M. B. Ghaznavi-Ghoushchi, K. Saghafi, The Parvicursor Infrastructure to Facilitate the Design of Grid and Cloud Computing

Systems, Computing, vol. 99, pp. 979-1006, October 2017.

32



Contributions

e Parvicursor Infrastructure

e PSML Language
— A conservative PDES language
— Mathematically formalization of its parallel execution semantics
— PSML simulation kernel and multi-core optimizations

e OSML Language
— For the first time, application of optimistic PDES to SLDLs in ESL
— For the first time, execution of different hardware models at different
electronic abstraction levels using optimistic synchronization by
proposing a hybrid state saving scheme

— A new optimistic PDES language called Optimistic System Modeling
Language (OSML) along with its distributed simulation kernel



Contributions

Troodon CAD Tool
— Automatic parallelization of HDLs and SLDLs

Parallel language extensions to the SystemC standard

— SystemC-to-OSML compiler infrastructure
— A new timing model for SystemC-compliant OSML execution

Spacetime-Parallel Exponential Integrator

Developing a new approach for spacetime parallel simulation of
SPICE-like simulators

Parallel integrations methods
Discretization techniques for exponential integrators
Preconditioner for exponential integrators

A new approach for computing the action of matrix exponential upon
a vector

Formulation of electrical circuits for exponential integrators

Parallel Device-Level Simulation



Future Directions

e Development of Parvicursor Services for Cloud Computing

— such as sandboxing, more performant event-driven file transfer, etc.
« OSML Language

— Applications to other domains such as computer networks

Dynamic load-balancing and adaptive PDES protocols

— Optimizing simulation speed using deep learning
— Seamless interfacing with other non-simulation parallel programming

languages

« Parallel Exponential Integration

Full implementation of spacetime-parallel simulator for linear and non-
linear circuits

OSML-AMS : AMS extensions to OSML language
Multiphysics language extensions to OSML language
Geometric integration

Domain decomposition



Thank you!




	Troodon: A Unified Framework for Massively Parallel Modeling and Simulation of  Computer Systems, and Digital and Analog Electronic Systems in Heterogeneous Abstraction Levels
	Table of Content
	Motivation
	Research Roadmap
	OSML Language - Introduction
	OSML Language - Contributions
	Parallel Simulation - Principles
	Synchronization Protocols
	Time Warp Algorithm (Jefferson)
	OSML Language – Related Work
	OSML Language
	OSML Language
	OSML’s PDES Systems Programming Model
	OSML’s PDES Systems Programming Model
	OSML’s PDES Systems Programming Model
	OSML’s PDES Systems Programming Model
	The Optimistic OSML Simulation Kernel
	The Optimistic OSML Simulation Kernel
	The Optimistic OSML Simulation Kernel
	Troodon Tool Flow
	Troodon Tool Flow
	OSML Language – Performance Study
	OSML Language – Performance Study
	OSML Language – Performance Study
	Spacetime-Parallel Integration Using Exponential Integrators
	Spacetime-Parallel Integration Using Exponential Integrators
	Spacetime-Parallel Integration Using Exponential Integrators
	Spacetime-Parallel Integration Using Exponential Integrators
	Spacetime-Parallel Integration Using Exponential Integrators
	Parallelization Techniques Not Discussed in this Presentation
	Parallelization Techniques Not Discussed in this Presentation
	Parallelization Techniques Not Discussed in this Presentation
	Contributions
	Contributions
	Future Directions
	Thank you!

