
Troodon: A Unified Framework for Massively Parallel
Modeling and Simulation of Computer Systems, and Digital
and Analog Electronic Systems in Heterogeneous Abstraction

Levels

School of Engineering
Department of Electrical Engineering

Shahed University

By: Alireza Poshtkohi
Website: www.poshtkohi.info

1

Table of Content

2

• Motivation
• A New Parallel Modeling and Simulation Language: OSML

Language
• Troodon Tool Flow
• Spacetime-Parallel Exponential Integration of ODEs and

PDEs
• Parallelization Techniques Not Discussed in this Presentation
• Contributions
• Future Directions

Motivation

3

• With increase in the complexity of integrated circuits, it is necessary to improve the
speed of electronic simulators in all levels of abstraction (transistor to system level)

• We need scalable parallel modeling and simulation languages and frameworks
• Interaction between HW/SW systems and their analog physical environment
• Today systems leads to systems of digital HW/SW interwoven with analog and mixed

signal blocks. Embedded Analog/Mixed-Signal (E-AMS) systems

Research Roadmap

• Parallelization approaches developed for this research

4

System

Architecture

Gate

Optimistic
PDES –

Optimistic
System

Modeling
Language

(OSML)

Spacetime-Parallel
Exponential Integrator

Circuit

Device

Massively Parallel Quantum
Monte Carlo Device Simulation

OSML Language - Introduction
• The large size and complexity of today’s digital systems

with heterogeneous components, and complex
connections and functionalities impose many challenges
for verification in different abstraction levels particularly
for multi-domain systems such as analogue mixed signal.

• Accurate and high-speed simulation is a key point to
enable
– efficient and potential verification
– power and performance estimation,
– and design space exploration.

• These simulations are performed based on discrete event
simulation.

5

OSML Language - Contributions
• A new parallel simulation language (PSL) for ESL

– A new optimistic PDES language called Optimistic
System Modeling Language (OSML) for ESL

– One of the six research challenges in PADS
– Solves the obstacles unexplored by traditional PSLs
– Help ESL community avoid repetition of basic

discoveries
– First application of optimistic PDES to SLDLs
– For the first time, we allow different hardware models

at different electronic abstraction levels to be executed
by optimistic synchronization

– We implement a unified ESL CAD tool called Troodon
to automate parallelization of the existing hardware
languages

6

Parallel Simulation - Principles
• Execution of a discrete event simulation on a

parallel or distributed system with several
physical processors.

• The simulation model is decomposed into several
sub-models that can be executed in parallel
– Spatial partitioning,
– Temporal partitioning,

• Radically different from simple simulation
replications.

7

Synchronization Protocols

• Fundamental concepts
– Each Logical Process (LP) can be at a different

simulation time.
– Local causality constraint: events in each LP must be

executed in time stamp order.
• Synchronization algorithms

– Conservative: avoids local causality violations by
waiting until it’s safe.

– Optimistic::allows local causality violations but
provisions are done to recover from them at runtime.

8

Time Warp Algorithm (Jefferson)

• Different rollback management techniques
• Copy State Saving (CSS)

– Efficient if LP state small
– Can be made transparent to application

• Periodic State Saving (SS)
– Must turn off message sending during coast forward
– Reduced memory requirements
– less time for state saving
– Increased rollback cost

• Incremental State Saving (ISS)
– Preferred approach if large state vectors
– Means to simplify usage required

• Reverse Computation (RC)
– Efficient, requires automation 9

OSML Language – Related Work

10

A. Poshtkohi, M.B. Ghaznavi-Ghoushchi, K. Saghafi, Computer Modeling and Simulation – A Philosophical and Technological Survey, under
finalization, 2019.

OSML Language

• OSML is a fully-fledged object-oriented simulation
language
– Process-level granularity
– General purpose and domain-specific PSL
– with a dedicated elaboration phase
– has a PDES-aware syntax
– is a PDES systems programming language for explicit hybrid state

management
– is a PDES application programming language for transparent hybrid state

management
– takes advantage of a profile-driven sequential execution for partitioning
– is a general-purpose and special-purpose simulation language
– allow the programmer to use the facilities present in common parallel

programming languages like MPI (mapping, partition, etc.)
– Reversible ADT
– Crafted in C++17
– and so many other features

11

OSML Language
• One of the primary goals of OSML language is to enable optimistic,

explicitly parallel system-level modeling

12

PDES Microkernel
Kernel logical process, Event, Time, GVT mgr., Comm. mgr., Event set mgr., Time
Warp sim. manager, OnGVT callback, OnRollback callback

PDES Abatract Machine Defined by Logical Process Worldview

OSML Exokernel
Process mgr., kernel state, PSS/ISS/RC managers, fossil collection, lightweight fiber,
model elaborator, PDES time, tie-breaker, optimistic memory mgr., partitioning
services, hierarchical weighted graph, optimized containers (hash table, vector, etc.)

PDES Abstraction Layer (PAL)

Programming Language C++17 Standard

PDES Systems
Programming

Model

Optimistic new
Optimistic delete
PSS checkpoint
ISS checkpoint

RC callback
Explicit fiber

PDES Application
Programming

Model

Thread local storage
Reversible data types
Reversible containers

Parallel Event-driven Simulation
PDES-aware processes

Distributed serializable events

Optimistic
Components

Clock
Processor
Memory
Router
Arbiter

Utilities
Partitioning/Mapping

Optimistic tracing
Resource allocator

Serialization
Profiler

Hardware Data Types
Finite-precision integers

Limited-precision integers
Bit vectors

4-valued logic type
4-valued logic vectors

Predefined
Interfaces

Wire
FIFO

Semaphore
Mutex

OSML Core Language
PDES-aware

Structural
Elements

Components
Explicit

hierarchy
OOP

Pins/Ports
Interfaces

Connectors

OSML language architecture

OSML’s PDES Systems Programming Model
• It provides a user with low-level access to optimistic dynamic memory

and hybrid state saving for developing hardware models

13

P1

MEM

Memory
Component

P2

Processor
Component

Reg. file

PC

S
ta

te

P3

Accelerator
Component

A grid of processing elements

Req. queue

OSML exokernel

PDES microkernel
OnGVT OnRollback

ISS

12
A

F
T

E
O

LP3LP2LP1

PSS

ISS

89

MPIE

S

User space

DE
P D

ISS+RC5

6

7

10

Enqueue operation (int pri)↓
P3.iss_rc_save(pri,Enqueue_rc)
heap.insert({pri,timestamp})

Priority queue using ISS + RC

5

4

1

3Enqueue reverse callback ↓
heap.remove({pri,timestamp})

Heap

Enqueue operation ↓
Node n ← P3.onew[size]
P3.iss_save(rear.next,rear)
rear.next ← n
rear ← n

FIFO queue using ISS

Dequeue operation ↓
Node n ← front
P3.iss_save(front)
front ← front.next
P3.odelete n

front rear

Linked list

A: Aggregation
DE: De-aggregation
T: Tie-breaker
F: Flush
E: Event Set Mgr.
O: Output Mgr.
S: Serialization
D: De-serialization
P: Processing

Transition

Abbreviations

Port

Port-to-Pin Reg.
Pin

Pin-to-Pin Binding

P
34

PUT

A many-core architecture of PEs and its interaction with optimistic PDES engine by hybrid checkpointing

OSML’s PDES Systems Programming Model
• It provides a user with low-level access to optimistic dynamic memory

and hybrid state saving for developing hardware models

14
...clk

...

0 1 2 3 4 5 6 21
GVT 1000

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

y1 y3 y5 ... y21

The whole snapshots during 10 rising
clock edges by hybrid state saving.ISS Log

c

MEM

GVT
...clk

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

...

0 1 2 3 4 5 6 21
1000

The whole snapshots during 10
rising clock edges by CSS.

y1

y3

b

MEM

reg [63:0] MEM[0:MAX];
always @(posedge clk)
begin
 if(mode)
 MEM[addr]=datain;
 else
 dataout=MEM[addr];
end

addr
datain

mode
clk

dataout

x1

x2

x3

x4

MEM →1GB

a

64

OSML’s PDES Systems Programming Model

• Molding an optimistic component in OSML

15

 1 template <class T, int size>
 2 class osml_sync_memory : public osml_component {
 // Pin and port definitions
 3 osml_pin<osml_wire<bool > > clk; ...
 4 osml_inport<osml_wire<bool > > _clk;…
 5 process_state pss_state; // PSS-based state definition
 6 T *array = nullptr; osml_process *p;
 7 osml_sync_memory(const std::string &name){
 8 register_pin(clk, _clk); ... // Register pins to ports
 9 // Register a stackful process and do its settings
10 p = register_process(process, true, &pss_state, name);
11 p->register_on_partitioning(on_partitioning);
12 p->register_port(_clk); ...
13 p->register_sensitivity(_clk, OSML_POS_EDGE);
14 }
 // This method is invoked after partitioning
15 static void on_partitioning(osml_process &owner){
16 auto myComp = (osml_sync_memory *)owner.get_component();
17 myComp->array = new T[size];
18 }
};

 1 static void process(osml_process &owner){
 2 auto myComp = (osml_sync_memory *)owner.get_component();
 3 auto myState = (process_state *)owner.get_state();
 4 int addr = myComp->address->fetch();
 5 switch(myState->get_label()) { case 0: goto L0; }
 6 while(true) {
 7 if(!myComp->_we->fetch() …) // Read from memory
 8 myComp->_data_out->put(myComp->array[addr], owner);
 9 else if(myComp->_we->fetch() …) { // Write to memory
 // We must checkpoint before performing the real write
10 owner.iss_save(&myComp->array[addr], sizeof(T));
 // Now, we perform the write to the memory
11 myComp->array[addr] = myComp->data_in->fetch();
12 myState->writes++;
13 }
14 osml_wait(owner); myState->set_label(0);return;L0:
15 }
}

Definition of an optimistic memory written in OSML The process implementation of the memory component

OSML’s PDES Systems Programming Model

• Following the development of optimistic components, the
programmer connects them together in a function called
osml_main

16

The Optimistic OSML Simulation Kernel
• The system-level description written in OSML language must finally

be simulated by a kernel

17 UML class diagram of the optimistic OSML simulation kernel

The Optimistic OSML Simulation Kernel

• When a straggler message is received, rollback is per-
formed in three mixed steps
– ISS manager restores the before-images of state variables by a

reverse traversal
– RC manager invokes the reverse event handlers upon completion

of every ISS operation to backtrack the computation
– PSS manager is activated and performs coast forward in which

the LP is executed up to the rollback point to replay intermediate
process states

18

The Optimistic OSML Simulation Kernel

• The problem of simultaneous events in parallel simulation
– Two or more events that are scheduled to occur at the same point

in time are called simultaneous events
– A number of tie-breaking rules are necessary to decide which

simultaneous event should be executed first for a deterministic
simulation

– To solve this problem, time is defined by the following rule

19

𝑡𝑡1 < 𝑡𝑡2 ⇔ 𝑇𝑇1 < 𝑇𝑇2 ⋁ (𝑇𝑇1 = 𝑇𝑇2 ⋀ 𝐿𝐿𝐿𝐿1 < 𝐿𝐿𝐿𝐿2) ⋁ (𝑇𝑇1 = 𝑇𝑇2 ⋀ 𝐿𝐿𝐿𝐿1 = 𝐿𝐿𝐿𝐿2 ⋀ 𝑃𝑃𝑃𝑃1 < 𝑃𝑃𝑃𝑃2)

Troodon Tool Flow
• Troodon facilities the task of parallel simulation of existing HDLs and SLDLs on many-core

HPC clusters

20

Troodon Tool Flow
• SystemC-to-OSML compiler works in three phases:

– Preprocessing Phase
– Compiler Analysis Phase (Frontend)
– Source-to-Source Transformation Phase (Backend)

21

SystemC Specification
(*.h, *.cpp)

C++ Compiler (GCC,
LLVM/Clang, VC++, ...)

PSC Simulation Kernel

Composite Date Type
System

Partitioner and
Mapper Libs

MPI Library

Optimistc PDES
Wrapper

WARPED Optimistic
Simulation Kernel

Simultaneous Event
Tie-Breaker

Parallel
Simulation
Executable

PSC Runtime Framework Suite

PSC C++ Specification
(*.h, *.cpp)

Abstract Syntax Tree

Analysis Phase: Finds
Missed LP Semantics

Preprocessor (PPSC)

LLVM-Clang-based
Parser

P
S

C
2

S
ys

te
m

C
 C

++
 F

ro
nt

en
d

Rich IR Suitable for
PSC2 Backend

Transforms All SC
Constructs to PDES-

Compliant PSC
Language

Transformation Phase

Clang AST Traverse
and Rewrite Facilities

P
S

C
2

C
++

 B
ac

ke
nd

OSML Language – Performance Study
• We study a number of experiments to evaluate the OSML

performance
– The tests were carried out on an HPC cluster of 17 nodes
– Each machine had 12 cores operating at 3.33 GHz, 12GB RAM and 12MB L3

cache
– The machines were connected to a 40 GB/s fiber-optic network
– Each node ran CentOS 7 Linux with a kernel 3.10.0-327
– OSML speedups are reported in comparison with Accellera sequential SystemC

reference simulator

22 A many-core accelerator A many-core BFM platform

OSML Language – Performance Study
• Speedups of the benchmarks

23

Speedups of the different system level models Speedups of the BFM model with respect to the
number of PEs

OSML Language – Performance Study
• Speedups of the benchmarks

– This model has fluctuations in speedups specially by increasing the number of
processors. This is because of the small amount of RAM installed per node on the
cluster

24

Speedups of the many-core triple DES RTL model with respect to the number of PEs.

A. Poshtkohi, M.B. Ghaznavi-Ghoushchi, K. Saghafi, Optimistic Modeling and Simulation of Complex Hardware Platforms and Embedded
Systems on Many-Core HPC Clusters, IEEE Transactions on Parallel and Distributed Systems, 30:2 (2019), 428-444. (IF=3.971), doi:
10.1109/TPDS.2018.2860014.
A. Poshtkohi, M.B. Ghaznavi-Ghoushchi, K. Saghafi, Optimistic Synchronization and Tool Flow for Massively Accelerating SystemC on Many-
Core HPC Clusters, 2019. In finalization.

Spacetime-Parallel Integration Using Exponential Integrators

• Exponential integrators are a class of numerical methods for the
solution of ordinary differential equations, specifically initial value
problems

• This large class of methods from numerical analysis is based on the
exact integration of the linear part of the initial value problem.

• Because the linear part is integrated exactly, this can help to mitigate
the stiffness of a differential equation.

25

Spacetime-Parallel Integration Using Exponential Integrators

• Related works
– Traditional SPICE simulation: XYCE parallel simulator [1]

26

Quiescent solution of the
circuit

Modeling circuit elements

Setting up circuit
equations

Linearize circuit
equations

Solve linear equations
Ax=b for x

Converged?

End of simulation time?

No

Yes

Terminate

Yes

No

N
ex

t t
im

e
st

ep

[1] Online: https://xyce.sandia.gov/

Spacetime-Parallel Integration Using Exponential Integrators

• Sequential formulation

27

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝑔𝑔(𝑡𝑡)

𝑒𝑒−𝐴𝐴𝐴𝐴
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑 = 𝑒𝑒−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝑒𝑒−𝐴𝐴𝐴𝐴𝑔𝑔(𝑡𝑡)

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒−𝐴𝐴𝐴𝐴𝑢𝑢 𝑡𝑡 = −𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴𝑢𝑢(𝑡𝑡) + 𝑒𝑒−𝐴𝐴𝐴𝐴

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑒𝑒−𝐴𝐴𝐴𝐴𝑢𝑢) = 𝑒𝑒−𝐴𝐴𝐴𝐴𝑔𝑔(𝑡𝑡)

𝑒𝑒−𝐴𝐴𝐴𝐴𝑢𝑢 𝑡𝑡 − 𝑒𝑒−𝐴𝐴𝑡𝑡0𝑢𝑢(𝑡𝑡0) = � 𝑒𝑒−𝐴𝐴𝐴𝐴𝑔𝑔(𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡0

𝑢𝑢 𝑡𝑡 = 𝑒𝑒𝐴𝐴(𝑡𝑡−𝑡𝑡0)𝑢𝑢 𝑡𝑡0 + � 𝑒𝑒𝐴𝐴(𝑡𝑡−𝜏𝜏)𝑔𝑔(𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡0

Spacetime-Parallel Integration Using Exponential Integrators

• Parallel formulation

28

tft0

Δtw

Δt t1 t2 tn
t

Process
1

Process
2

Process
k

Last
process

Master
process

...

Scheduling of Moving Exponential Time Windows (METW) technique

A pipeline of processors in METW

Spacetime-Parallel Integration Using Exponential Integrators

• Experimental studies
– Implemented in C++ and MPI
– Tested on a 12-core machine (NUMA, two processors each having 6 cores)
– A RLC network with 100k elements
– Spacetime simulator is only implemented to exploit time-axis parallelism not space
– Xyce is a space-parallel SPICE simulator
– Xyce is set with preconditioned GMRES iterative solver
– The results shows promising results that can be improved if implemented by space parallelization

29

SIMULATOR EXECUTION
TIMES (SEC)

PARALLEL EXECUTION TIMES (SEC)

6 CORES 12 CORES

TIME SPEEDUP TIME SPEEDUP

SPACETIME 110.26 59.1 1.86 29.7 3.71

XYCE 2300.78 1114.34 2.06 590.53 3.89

A. Poshtkohi, M.B. Ghaznavi-Ghoushchi, K. Saghafi, Extreme-Scale Spacetime-Parallel Modeling and Simulation of Ordinary and Partial
Differential Equations using Exponential Integrators, under finalization, 2019.

Parallelization Techniques Not Discussed in this Presentation

• Parallel Nano-Scale Device Level Monte-carlo Simulation
– Device-level simulation are very time-consuming, so it requires parallelization

30 Sequential Monte-carlo Device Simulation Direct parallelization of the monte-carlo
device simulations

Parallelization Techniques Not Discussed in this Presentation

• PSML: Parallel System Modeling and Simulation Language for
Electronic System Level

– An asynchronous conservative language
– Cross-platform execution environment using Parvicursor services
– Formally-defined parallel execution semantics
– A multi-core implementation

31

PSML conceptual framework

LP5 LP8

LP7
LP6

Comp. BComp. A
LP1

LP3

LP2

Hierarchical PSML User LP Network

LP4

Parallel Computing Platform

Comp. A

Proxy
Sub-comp.

LP ref.

Events
Port

Static
sensitivity

Delay

State vars

Shared
vars

Connector

/In
terfa

ce

PSML Simulation Kernel

Model Partitioning and Mapping

LP8

LP5

LP1

LP6

LP4

LP3

LP7

LP2

PDES Wrapper
PDES Simulation Kernel

Clustered Kernel LP Network

PSML
Compiler

Designer

PSML
Developer

PDES
Developer

P3

LVT, Tie
Breaker

State
vars
Future

Event List
Unsent scheduled

event list

Neighbors Map

PSML as a Parallel Intermediate Language
SystemC, SystemVerilog,SpecC Verilog,VHDL

A. Poshtkohi, M.B. Ghaznavi-Ghoushchi, K. Saghafi, PSML: Parallel System
Modeling and Simulation Language for Electronic System Level, Journal of
Supercomputing, 2018. doi: 10.1007/s11227-018-2682-1

Parallelization Techniques Not Discussed in this Presentation

32

• Parvicursor is based on the distributed objects paradigm that can facilitate the
construction of scalable and high-performance parallel distributed systems

A. Poshtkohi, M. B. Ghaznavi-Ghoushchi, K. Saghafi, The Parvicursor Infrastructure to Facilitate the Design of Grid and Cloud Computing
Systems, Computing, vol. 99, pp. 979–1006, October 2017.

Contributions

33

• Parvicursor Infrastructure
• PSML Language

– A conservative PDES language
– Mathematically formalization of its parallel execution semantics
– PSML simulation kernel and multi-core optimizations

• OSML Language
– For the first time, application of optimistic PDES to SLDLs in ESL
– For the first time, execution of different hardware models at different

electronic abstraction levels using optimistic synchronization by
proposing a hybrid state saving scheme

– A new optimistic PDES language called Optimistic System Modeling
Language (OSML) along with its distributed simulation kernel

Contributions

34

• Troodon CAD Tool
– Automatic parallelization of HDLs and SLDLs
– Parallel language extensions to the SystemC standard
– SystemC-to-OSML compiler infrastructure
– A new timing model for SystemC-compliant OSML execution

• Spacetime-Parallel Exponential Integrator
– Developing a new approach for spacetime parallel simulation of

SPICE-like simulators
– Parallel integrations methods
– Discretization techniques for exponential integrators
– Preconditioner for exponential integrators
– A new approach for computing the action of matrix exponential upon

a vector
– Formulation of electrical circuits for exponential integrators

• Parallel Device-Level Simulation

Future Directions

35

• Development of Parvicursor Services for Cloud Computing
– such as sandboxing, more performant event-driven file transfer, etc.

• OSML Language
– Applications to other domains such as computer networks
– Dynamic load-balancing and adaptive PDES protocols
– Optimizing simulation speed using deep learning
– Seamless interfacing with other non-simulation parallel programming

languages
• Parallel Exponential Integration

– Full implementation of spacetime-parallel simulator for linear and non-
linear circuits

– OSML-AMS : AMS extensions to OSML language
– Multiphysics language extensions to OSML language
– Geometric integration
– Domain decomposition

Thank you!

Q
U

ES
TIONS

A. Poshtkohi

	Troodon: A Unified Framework for Massively Parallel Modeling and Simulation of Computer Systems, and Digital and Analog Electronic Systems in Heterogeneous Abstraction Levels
	Table of Content
	Motivation
	Research Roadmap
	OSML Language - Introduction
	OSML Language - Contributions
	Parallel Simulation - Principles
	Synchronization Protocols
	Time Warp Algorithm (Jefferson)
	OSML Language – Related Work
	OSML Language
	OSML Language
	OSML’s PDES Systems Programming Model
	OSML’s PDES Systems Programming Model
	OSML’s PDES Systems Programming Model
	OSML’s PDES Systems Programming Model
	The Optimistic OSML Simulation Kernel
	The Optimistic OSML Simulation Kernel
	The Optimistic OSML Simulation Kernel
	Troodon Tool Flow
	Troodon Tool Flow
	OSML Language – Performance Study
	OSML Language – Performance Study
	OSML Language – Performance Study
	Spacetime-Parallel Integration Using Exponential Integrators
	Spacetime-Parallel Integration Using Exponential Integrators
	Spacetime-Parallel Integration Using Exponential Integrators
	Spacetime-Parallel Integration Using Exponential Integrators
	Spacetime-Parallel Integration Using Exponential Integrators
	Parallelization Techniques Not Discussed in this Presentation
	Parallelization Techniques Not Discussed in this Presentation
	Parallelization Techniques Not Discussed in this Presentation
	Contributions
	Contributions
	Future Directions
	Thank you!

